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Abstract

In this work we introduce some category-theoretical concepts and techniques to study

probability distributions on metric spaces and ordered metric spaces. The leading themes

in this work are Kantorovich duality [Vil09, Chapter 5], Choquet theory [Win85, Chap-

ter 1], and the categorical theory of monads and their algebras [Mac00, Chapter VI].

Categorical Probability. In Chapter 1 we give an overview of the concept of a prob-

ability monad, first defined by Giry [Gir82].

Probability monads can be interpreted as a categorical tool to talk about random

elements of a space. Given a space X, we can assign to it a space PX, which extends X

by allowing extra elements, random elements. We can consider these random elements

as formal convex combinations, or mixtures, of elements of X. For example, the law of a
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fair coin flip is 1/2 “heads” + 1/2 “tails”. Of course, in general, such mixtures are given

by integrals rather than just sums. Probability monads allow to iterate the construction,

and talk about the space PPX of random elements with random law. Given such an

element of PPX, one can always integrate it to obtain a simple probability measure in

PX. In other words, integration always defines a map E : PPX → PX.

Spaces where the convex combinations can be actually evaluated, so that they are well-

defined operations, are called algebras of the probability monad. These are the spaces,

for example R, where one can take expectation values of random variables. The set

{“heads”, “tails”} is not an algebra of the monad: there is no element, or deterministic

state which correspond to “halfway between heads and tails”.

As it is known, to every monad corresponds an adjunction. For probability monads,

this adjunction can be interpreted in terms of Choquet theory [Win85, Chapter 1]: given

any object X and any algebra A, there is a natural bijection between maps X → A and

affine maps PX → A.

The Kantorovich Monad. In Chapter 2 we define a probability monad on the cat-

egory of complete metric spaces and 1-Lipschitz maps called the Kantorovich monad,

extending a previous construction due to van Breugel [vB05]. This monad assigns to

each complete metric space X its Wasserstein space PX, which is itself a complete

metric space [Vil09].

It is well-known [Vil09, Chapter 6] that finitely supported probability measures with

rational coefficients, or empirical distributions of finite sequences, are dense in the

Wasserstein space. This density property can be translated into categorical language

as a universal property of the Wasserstein space PX, namely, as a colimit of a diagram

involving certain powers of X. The monad structure of P , and in particular the inte-

gration map E, is uniquely determined by this universal property, without the need to

define it in terms of integrals or measure theory. In some sense, the universal property

makes the integration map inevitable, it arises directly from the characterization of P in

terms of finite powers.

We prove that the algebras of the Kantorovich monad are exactly the closed convex

subsets of Banach spaces. In the spirit of categorical probability, these can be interpreted

as the complete metric spaces with a well-defined notion of convex combinations. The

“Choquet adjunction” that we obtain is then the following: given a complete metric

space X and a Banach space A, there is a natural bijection between short maps X → A

and short affine maps X → A.

In the end of the chapter we show that both the integration map E : PPX → PX and
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the marginal map ∆ : P (X×Y )→ PX×PY are proper maps. This means in particular

that the set of probability measures over a Wasserstein space PX which integrate to a

given measure p ∈ PX is always compact, and analogously, that the set of couplings of

any two probability measures p and q is compact as well. As a consequence, on every

complete metric space, every Kantorovich duality problem admits an optimal solution.

Stochastic Orders. In Chapter 3 we extend the Kantorovich monad of Chapter 2 to

metric spaces equipped with a partial order. The order is inherited by the Wasserstein

space, and is called the stochastic order. Differently from most approaches in the litera-

ture, we define a compatibility condition of the order with the metric itself, rather then

with the topology it induces. We call the spaces with this property L-ordered spaces.

On L-ordered spaces, the stochastic order induced on the Wasserstein spaces satisfies

itself a form of Kantorovich duality: given two measures p, q, we can say that p ≤ q if

and only if they admit a coupling r such that for all the points (x, y) in the support of

r we have x ≤ y. An interpretation is that there exists a transport plan that moves the

mass only upwards in the order, not downwards. Alternatively, we can say that p ≤ q if

and only if for all monotone 1-Lipschitz functions
∫
X
f dp ≤

∫
X
f dq.

This Kantorovich duality property implies that the stochastic order on L-ordered

spaces is always a partial order, i.e. it is antisymmetric.

The Kantorovich monad of Chapter 2 can be extended naturally to the category of

L-ordered metric spaces. We prove that its algebras are the closed convex subsets of

ordered Banach spaces, i.e. Banach spaces equipped with a partial order induced by a

closed cone. The integration map on ordered Banach spaces is always monotone, and

we prove that it is even strictly monotone: if p ≤ q for the stochastic order and p and

q have the same expectation value, then p = q. This generalizes a result which is long

known for the real line.

We can consider the category of L-ordered metric spaces as locally posetal 2-categories,

with the 2-cells given by the pointwise order of the functions. This gives an order-

theoretical version of “Choquet adjunction”: given an L-ordered complete metric space

X and an ordered Banach space A, there is a natural isomorphism of partial orders

between short monotone maps X → A and short affine monotone maps X → A.

Moreover, in this 2-categorical setting, we can describe concave and convex maps

categorically, exactly as the lax and oplax morphisms of algebras.

Convex Orders. In Chapter 4 we study a different order between probability mea-

sures, which can be interpreted as pointing in the direction of increasing randomness.
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We have seen that probability monads can be interpreted in terms of formal convex

combinations, and that their algebras can be interpreted as spaces where such convex

combinations can be evaluated. Here we develop a new categorical formalism to describe

operations evaluated partially. For example, “5+4” is a partial evaluation of the sum

“2+3+4”. We prove that partial evaluations for the Kantorovich monad, or partial

expectations, define a closed partial order on the Wasserstein space PA over every algebra

A, and that the resulting ordered space is itself an algebra.

We prove that, for the Kantorovich monad, these partial expectations correspond to

conditional expectations in distribution. This implies that the partial evaluation order is

equivalent to the order known in the literature as the convex or Choquet order [Win85].

A useful consequence of this equivalence and of the fact that the integration map E

is proper is that bounded monotone nets in the partial evaluation order always converge.

This fact can be interpreted as a result of convergence in distribution for martingales

and inverse martingales over general Banach spaces.

Given an algebra A, we can compare the partial evaluation order and the stochastic

order on PA. We show that the two orders are transverse, in the sense that every two

probability distributions comparable for both orders are necessarily equal. We can also

combine the two orders to form a new order, which we call the lax partial evaluation

order. The space PA with this order also forms an algebra.

Finally, we study the relation between these partial evaluation orders and convex

functions. As is well-known [Win85], the Choquet order is dual to convex functions. We

know from Chapter 3 that convex functions are the oplax morphisms of algebras. This

is not a coincidence: as we show, the partial evaluation order and convex functions are

related by the “ordered Choquet adjunction” of Chapter 3. This permits to characterize

the partial evaluation order in terms of a universal property, as an oplax codescent

object [Lac02]. From this universal property we can derive a general duality result valid

on all ordered Banach spaces, which says that over every ordered Banach space A, the

lax partial evaluation order is dual to monotone convex functions. In other words, for

every two probability measures p and q over A,
∫
fdp ≤

∫
fdq for all convex monotone

functions f if and only if p �l q for the lax partial evaluation order. As far as we know,

this result in its full generality is new.

Sources. Part of this work is contained in the papers [FP17] and [FP18a]. The rest

will appear in two papers which are currently in preparation.1

1Update (September 2018): part of the work is now also available in the preprint [FP18b].
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